MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. 319.0 Aluminum

Both 360.0 aluminum and 319.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 2.5
1.8 to 2.0
Fatigue Strength, MPa 140
76 to 80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 190
170 to 210
Tensile Strength: Ultimate (UTS), MPa 300
190 to 240
Tensile Strength: Yield (Proof), MPa 170
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 530
480
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
600
Melting Onset (Solidus), °C 570
540
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
27
Electrical Conductivity: Equal Weight (Specific), % IACS 110
84

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1070
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 200
88 to 220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
48
Strength to Weight: Axial, points 32
18 to 24
Strength to Weight: Bending, points 38
25 to 30
Thermal Diffusivity, mm2/s 55
44
Thermal Shock Resistance, points 14
8.6 to 11

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
85.8 to 91.5
Copper (Cu), % 0 to 0.6
3.0 to 4.0
Iron (Fe), % 0 to 2.0
0 to 1.0
Magnesium (Mg), % 0.4 to 0.6
0 to 0.1
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.35
Silicon (Si), % 9.0 to 10
5.5 to 6.5
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 1.0
Residuals, % 0
0 to 0.5