MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. 5154 Aluminum

Both 360.0 aluminum and 5154 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 2.5
3.4 to 20
Fatigue Strength, MPa 140
100 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 190
140 to 210
Tensile Strength: Ultimate (UTS), MPa 300
240 to 360
Tensile Strength: Yield (Proof), MPa 170
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 530
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 200
64 to 540
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 32
25 to 37
Strength to Weight: Bending, points 38
32 to 42
Thermal Diffusivity, mm2/s 55
52
Thermal Shock Resistance, points 14
10 to 16

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
94.4 to 96.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 2.0
0 to 0.4
Magnesium (Mg), % 0.4 to 0.6
3.1 to 3.9
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0 to 0.25
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.2
Residuals, % 0
0 to 0.15