MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. ASTM A369 Grade FP12

360.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
140
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.5
20
Fatigue Strength, MPa 140
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 190
300
Tensile Strength: Ultimate (UTS), MPa 300
470
Tensile Strength: Yield (Proof), MPa 170
250

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 590
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1070
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
81
Resilience: Unit (Modulus of Resilience), kJ/m3 200
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 55
12
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
0.8 to 1.3
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
96.8 to 98.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0