MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. ASTM Grade LCA Steel

360.0 aluminum belongs to the aluminum alloys classification, while ASTM grade LCA steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.5
27
Fatigue Strength, MPa 140
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 300
500
Tensile Strength: Yield (Proof), MPa 170
230

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
49
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1070
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
150
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 32
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 55
14
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.25
Copper (Cu), % 0 to 0.6
0 to 0.3
Iron (Fe), % 0 to 2.0
96.9 to 100
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 1.0