MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. EN 1.4568 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 2.5
2.3 to 21
Fatigue Strength, MPa 140
220 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
520 to 930
Tensile Strength: Ultimate (UTS), MPa 300
830 to 1620
Tensile Strength: Yield (Proof), MPa 170
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1070
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
290 to 5710
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 32
30 to 58
Strength to Weight: Bending, points 38
25 to 40
Thermal Diffusivity, mm2/s 55
4.3
Thermal Shock Resistance, points 14
23 to 46

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0.7 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
70.9 to 76.8
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0