MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. EN 1.4901 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while EN 1.4901 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.5
19
Fatigue Strength, MPa 140
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
460
Tensile Strength: Ultimate (UTS), MPa 300
740
Tensile Strength: Yield (Proof), MPa 170
490

Thermal Properties

Latent Heat of Fusion, J/g 530
260
Maximum Temperature: Mechanical, °C 170
650
Melting Completion (Liquidus), °C 590
1490
Melting Onset (Solidus), °C 570
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1070
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
120
Resilience: Unit (Modulus of Resilience), kJ/m3 200
620
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 32
26
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 55
6.9
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
85.8 to 89.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.25
0