MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. EN AC-46400 Aluminum

Both 360.0 aluminum and EN AC-46400 aluminum are aluminum alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
77 to 120
Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 2.5
1.1 to 1.7
Fatigue Strength, MPa 140
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300
170 to 310
Tensile Strength: Yield (Proof), MPa 170
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 530
520
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
610
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1070
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 200
82 to 500
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
52
Strength to Weight: Axial, points 32
18 to 32
Strength to Weight: Bending, points 38
26 to 38
Thermal Diffusivity, mm2/s 55
55
Thermal Shock Resistance, points 14
7.8 to 14

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
85.4 to 90.5
Copper (Cu), % 0 to 0.6
0.8 to 1.3
Iron (Fe), % 0 to 2.0
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.4 to 0.6
0.25 to 0.65
Manganese (Mn), % 0 to 0.35
0.15 to 0.55
Nickel (Ni), % 0 to 0.5
0 to 0.2
Silicon (Si), % 9.0 to 10
8.3 to 9.7
Tin (Sn), % 0 to 0.15
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.8
Residuals, % 0
0 to 0.25