MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. Grade CX2MW Nickel

360.0 aluminum belongs to the aluminum alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 2.5
34
Fatigue Strength, MPa 140
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 300
620
Tensile Strength: Yield (Proof), MPa 170
350

Thermal Properties

Latent Heat of Fusion, J/g 530
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 590
1550
Melting Onset (Solidus), °C 570
1490
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.8
12
Embodied Energy, MJ/kg 140
170
Embodied Water, L/kg 1070
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
180
Resilience: Unit (Modulus of Resilience), kJ/m3 200
290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 32
19
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 55
2.7
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
2.0 to 6.0
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0 to 0.5
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0