MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. Grade M35-1 Nickel

360.0 aluminum belongs to the aluminum alloys classification, while grade M35-1 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is grade M35-1 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
160
Elongation at Break, % 2.5
28
Fatigue Strength, MPa 140
130
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
62
Tensile Strength: Ultimate (UTS), MPa 300
500
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 590
1280
Melting Onset (Solidus), °C 570
1240
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1070
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
120
Stiffness to Weight: Axial, points 15
10
Stiffness to Weight: Bending, points 53
21
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 38
16
Thermal Diffusivity, mm2/s 55
5.7
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.35
Copper (Cu), % 0 to 0.6
26 to 33
Iron (Fe), % 0 to 2.0
0 to 3.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Nickel (Ni), % 0 to 0.5
59.8 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 9.0 to 10
0 to 1.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0