MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. C18700 Copper

360.0 aluminum belongs to the aluminum alloys classification, while C18700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 2.5
9.0 to 9.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Shear Strength, MPa 190
170 to 190
Tensile Strength: Ultimate (UTS), MPa 300
290 to 330
Tensile Strength: Yield (Proof), MPa 170
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 530
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 590
1080
Melting Onset (Solidus), °C 570
950
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
380
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
98
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 200
240 to 280
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 53
18
Strength to Weight: Axial, points 32
9.0 to 10
Strength to Weight: Bending, points 38
11 to 12
Thermal Diffusivity, mm2/s 55
110
Thermal Shock Resistance, points 14
10 to 12

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Copper (Cu), % 0 to 0.6
98 to 99.2
Iron (Fe), % 0 to 2.0
0
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5