MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. S40945 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while S40945 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
160
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.5
25
Fatigue Strength, MPa 140
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 190
270
Tensile Strength: Ultimate (UTS), MPa 300
430
Tensile Strength: Yield (Proof), MPa 170
230

Thermal Properties

Latent Heat of Fusion, J/g 530
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.2
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1070
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
89
Resilience: Unit (Modulus of Resilience), kJ/m3 200
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 32
15
Strength to Weight: Bending, points 38
16
Thermal Diffusivity, mm2/s 55
6.9
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 2.0
85.1 to 89.3
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0