MakeItFrom.com
Menu (ESC)

360.0 Aluminum vs. S44800 Stainless Steel

360.0 aluminum belongs to the aluminum alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 360.0 aluminum and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
190
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 2.5
23
Fatigue Strength, MPa 140
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Shear Strength, MPa 190
370
Tensile Strength: Ultimate (UTS), MPa 300
590
Tensile Strength: Yield (Proof), MPa 170
450

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.8
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1070
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4
120
Resilience: Unit (Modulus of Resilience), kJ/m3 200
480
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 55
4.6
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 85.1 to 90.6
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.6
0 to 0.15
Iron (Fe), % 0 to 2.0
62.6 to 66.5
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0 to 0.5
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 9.0 to 10
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0