MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. 1100A Aluminum

Both 364.0 aluminum and 1100A aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 7.5
4.5 to 34
Fatigue Strength, MPa 120
35 to 74
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 200
59 to 99
Tensile Strength: Ultimate (UTS), MPa 300
89 to 170
Tensile Strength: Yield (Proof), MPa 160
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 520
400
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 560
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
230
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
60
Electrical Conductivity: Equal Weight (Specific), % IACS 100
200

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 180
5.9 to 150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 31
9.1 to 17
Strength to Weight: Bending, points 38
16 to 25
Thermal Diffusivity, mm2/s 51
93
Thermal Shock Resistance, points 14
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 87.2 to 92
99 to 100
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
0.050 to 0.2
Iron (Fe), % 0 to 1.5
0 to 1.0
Magnesium (Mg), % 0.2 to 0.4
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.050
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0
0 to 0.15