MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. 206.0 Aluminum

Both 364.0 aluminum and 206.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 7.5
8.4 to 12
Fatigue Strength, MPa 120
88 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 200
260
Tensile Strength: Ultimate (UTS), MPa 300
330 to 440
Tensile Strength: Yield (Proof), MPa 160
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 520
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
99

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 180
270 to 840
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
46
Strength to Weight: Axial, points 31
30 to 40
Strength to Weight: Bending, points 38
35 to 42
Thermal Diffusivity, mm2/s 51
46
Thermal Shock Resistance, points 14
17 to 23

Alloy Composition

Aluminum (Al), % 87.2 to 92
93.3 to 95.3
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
4.2 to 5.0
Iron (Fe), % 0 to 1.5
0 to 0.15
Magnesium (Mg), % 0.2 to 0.4
0.15 to 0.35
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Nickel (Ni), % 0 to 0.15
0 to 0.050
Silicon (Si), % 7.5 to 9.5
0 to 0.1
Tin (Sn), % 0 to 0.15
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0
0 to 0.15