MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. AISI 301 Stainless Steel

364.0 aluminum belongs to the aluminum alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 7.5
7.4 to 46
Fatigue Strength, MPa 120
210 to 600
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 200
410 to 860
Tensile Strength: Ultimate (UTS), MPa 300
590 to 1460
Tensile Strength: Yield (Proof), MPa 160
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 520
280
Maximum Temperature: Mechanical, °C 190
840
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1080
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 180
130 to 2970
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
21 to 52
Strength to Weight: Bending, points 38
20 to 37
Thermal Diffusivity, mm2/s 51
4.2
Thermal Shock Resistance, points 14
12 to 31

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.25 to 0.5
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
70.7 to 78
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0 to 0.15
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0