MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. AISI 422 Stainless Steel

364.0 aluminum belongs to the aluminum alloys classification, while AISI 422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is AISI 422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 7.5
15 to 17
Fatigue Strength, MPa 120
410 to 500
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 200
560 to 660
Tensile Strength: Ultimate (UTS), MPa 300
910 to 1080
Tensile Strength: Yield (Proof), MPa 160
670 to 870

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Maximum Temperature: Mechanical, °C 190
650
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 560
1470
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1080
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1140 to 1910
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
32 to 38
Strength to Weight: Bending, points 38
26 to 30
Thermal Diffusivity, mm2/s 51
6.4
Thermal Shock Resistance, points 14
33 to 39

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0.25 to 0.5
11 to 12.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
81.9 to 85.8
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.15
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0