MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. B390.0 Aluminum

Both 364.0 aluminum and B390.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
76
Elongation at Break, % 7.5
0.88
Fatigue Strength, MPa 120
170
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
29
Tensile Strength: Ultimate (UTS), MPa 300
320
Tensile Strength: Yield (Proof), MPa 160
250

Thermal Properties

Latent Heat of Fusion, J/g 520
640
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
580
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 100
88

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1080
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
410
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 31
32
Strength to Weight: Bending, points 38
38
Thermal Diffusivity, mm2/s 51
55
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 87.2 to 92
72.7 to 79.6
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 1.5
0 to 1.3
Magnesium (Mg), % 0.2 to 0.4
0.45 to 0.65
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0 to 0.15
0 to 0.1
Silicon (Si), % 7.5 to 9.5
16 to 18
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 1.5
Residuals, % 0
0 to 0.2