MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN 1.3536 Steel

364.0 aluminum belongs to the aluminum alloys classification, while EN 1.3536 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN 1.3536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 300
660

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 190
440
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1080
55

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 31
23
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 51
11
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 87.2 to 92
0 to 0.050
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0.25 to 0.5
1.7 to 2.0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 1.5
96 to 97.4
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.35
Nickel (Ni), % 0 to 0.15
0
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0.15 to 0.45
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0