MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN 1.3963 Alloy

364.0 aluminum belongs to the aluminum alloys classification, while EN 1.3963 alloy belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 7.5
29
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
72
Shear Strength, MPa 200
290
Tensile Strength: Ultimate (UTS), MPa 300
440
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 21
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
25
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 8.0
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1080
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
260
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 31
15
Strength to Weight: Bending, points 38
16
Thermal Shock Resistance, points 14
110

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.25 to 0.5
0 to 0.25
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
60.5 to 64.9
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.15
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0.1 to 0.2
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0