MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN 1.4568 Stainless Steel

364.0 aluminum belongs to the aluminum alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 7.5
2.3 to 21
Fatigue Strength, MPa 120
220 to 670
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 200
520 to 930
Tensile Strength: Ultimate (UTS), MPa 300
830 to 1620
Tensile Strength: Yield (Proof), MPa 160
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 520
280
Maximum Temperature: Mechanical, °C 190
890
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1080
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290 to 5710
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
30 to 58
Strength to Weight: Bending, points 38
25 to 40
Thermal Diffusivity, mm2/s 51
4.3
Thermal Shock Resistance, points 14
23 to 46

Alloy Composition

Aluminum (Al), % 87.2 to 92
0.7 to 1.5
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0.25 to 0.5
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
70.9 to 76.8
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.15
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0