MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN 1.6920 Steel

364.0 aluminum belongs to the aluminum alloys classification, while EN 1.6920 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN 1.6920 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 7.5
19
Fatigue Strength, MPa 120
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 300
640
Tensile Strength: Yield (Proof), MPa 160
420

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1080
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
470
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 31
22
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 51
10
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0.25 to 0.5
0.5 to 1.0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
95.7 to 98
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.35
Nickel (Ni), % 0 to 0.15
0.3 to 0.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0