MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN 1.8888 Steel

364.0 aluminum belongs to the aluminum alloys classification, while EN 1.8888 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 7.5
16
Fatigue Strength, MPa 120
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 200
510
Tensile Strength: Ultimate (UTS), MPa 300
830
Tensile Strength: Yield (Proof), MPa 160
720

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.7
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1080
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1370
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 31
29
Strength to Weight: Bending, points 38
25
Thermal Diffusivity, mm2/s 51
11
Thermal Shock Resistance, points 14
24

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.25 to 0.5
0 to 1.5
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 1.5
91.9 to 100
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.15
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.5 to 9.5
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0