MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN 2.4856 Nickel

364.0 aluminum belongs to the aluminum alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 7.5
28
Fatigue Strength, MPa 120
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Shear Strength, MPa 200
570
Tensile Strength: Ultimate (UTS), MPa 300
880
Tensile Strength: Yield (Proof), MPa 160
430

Thermal Properties

Latent Heat of Fusion, J/g 520
330
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
80
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 8.0
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1080
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
200
Resilience: Unit (Modulus of Resilience), kJ/m3 180
440
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 31
28
Strength to Weight: Bending, points 38
24
Thermal Diffusivity, mm2/s 51
2.7
Thermal Shock Resistance, points 14
29

Alloy Composition

Aluminum (Al), % 87.2 to 92
0 to 0.4
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0.25 to 0.5
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 1.5
0 to 5.0
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.15
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0