MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. EN AC-45300 Aluminum

Both 364.0 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 7.5
1.0 to 2.8
Fatigue Strength, MPa 120
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300
220 to 290
Tensile Strength: Yield (Proof), MPa 160
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 520
470
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
36
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
160 to 390
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 31
23 to 29
Strength to Weight: Bending, points 38
30 to 35
Thermal Diffusivity, mm2/s 51
60
Thermal Shock Resistance, points 14
10 to 13

Alloy Composition

Aluminum (Al), % 87.2 to 92
90.2 to 94.2
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
1.0 to 1.5
Iron (Fe), % 0 to 1.5
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.2 to 0.4
0.35 to 0.65
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0 to 0.15
0 to 0.25
Silicon (Si), % 7.5 to 9.5
4.5 to 5.5
Tin (Sn), % 0 to 0.15
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.15
0 to 0.15
Residuals, % 0
0 to 0.15