MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. CC331G Bronze

364.0 aluminum belongs to the aluminum alloys classification, while CC331G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 7.5
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 300
620
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 520
230
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 600
1060
Melting Onset (Solidus), °C 560
1000
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
61
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
13
Electrical Conductivity: Equal Weight (Specific), % IACS 100
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1080
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
97
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 51
17
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 87.2 to 92
8.5 to 10.5
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
83 to 86.5
Iron (Fe), % 0 to 1.5
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.2 to 0.4
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.15
0 to 1.5
Silicon (Si), % 7.5 to 9.5
0 to 0.2
Tin (Sn), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0 to 0.15
0