MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. CC380H Copper-nickel

364.0 aluminum belongs to the aluminum alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 7.5
26
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
47
Tensile Strength: Ultimate (UTS), MPa 300
310
Tensile Strength: Yield (Proof), MPa 160
120

Thermal Properties

Latent Heat of Fusion, J/g 520
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 600
1130
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
11
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1080
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
65
Resilience: Unit (Modulus of Resilience), kJ/m3 180
59
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 31
9.8
Strength to Weight: Bending, points 38
12
Thermal Diffusivity, mm2/s 51
13
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 87.2 to 92
0 to 0.010
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
84.5 to 89
Iron (Fe), % 0 to 1.5
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.5
Nickel (Ni), % 0 to 0.15
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 7.5 to 9.5
0 to 0.1
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0 to 0.15
0