MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. Grade CX2M Nickel

364.0 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 7.5
45
Fatigue Strength, MPa 120
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 300
550
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 520
330
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 560
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
65
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 8.0
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1080
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
210
Resilience: Unit (Modulus of Resilience), kJ/m3 180
220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 51
2.7
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.25 to 0.5
22 to 24
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 1.5
0 to 1.5
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0 to 0.15
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0