MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. Grade FDSiCr Steel

364.0 aluminum belongs to the aluminum alloys classification, while grade FDSiCr steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is grade FDSiCr steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 300
1930

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1080
48

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
69
Strength to Weight: Bending, points 38
44
Thermal Diffusivity, mm2/s 51
13
Thermal Shock Resistance, points 14
58

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0.5 to 0.6
Chromium (Cr), % 0.25 to 0.5
0.5 to 0.8
Copper (Cu), % 0 to 0.2
0 to 0.12
Iron (Fe), % 0 to 1.5
96.5 to 97.8
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.9
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
1.2 to 1.6
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0