MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. C28500 Muntz Metal

364.0 aluminum belongs to the aluminum alloys classification, while C28500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 7.5
20
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
40
Shear Strength, MPa 200
320
Tensile Strength: Ultimate (UTS), MPa 300
520
Tensile Strength: Yield (Proof), MPa 160
380

Thermal Properties

Latent Heat of Fusion, J/g 520
170
Maximum Temperature: Mechanical, °C 190
110
Melting Completion (Liquidus), °C 600
900
Melting Onset (Solidus), °C 560
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 120
100
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
29
Electrical Conductivity: Equal Weight (Specific), % IACS 100
33

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1080
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
94
Resilience: Unit (Modulus of Resilience), kJ/m3 180
700
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 53
20
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 51
33
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
57 to 59
Iron (Fe), % 0 to 1.5
0 to 0.35
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 7.5 to 9.5
0
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
39.5 to 43
Residuals, % 0
0 to 0.9