MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. C61500 Bronze

364.0 aluminum belongs to the aluminum alloys classification, while C61500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 7.5
3.0 to 55
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
42
Shear Strength, MPa 200
350 to 550
Tensile Strength: Ultimate (UTS), MPa 300
480 to 970
Tensile Strength: Yield (Proof), MPa 160
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 520
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 600
1040
Melting Onset (Solidus), °C 560
1030
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 120
58
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
13
Electrical Conductivity: Equal Weight (Specific), % IACS 100
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1080
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 180
100 to 2310
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 31
16 to 32
Strength to Weight: Bending, points 38
16 to 26
Thermal Diffusivity, mm2/s 51
16
Thermal Shock Resistance, points 14
17 to 34

Alloy Composition

Aluminum (Al), % 87.2 to 92
7.7 to 8.3
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
89 to 90.5
Iron (Fe), % 0 to 1.5
0
Lead (Pb), % 0
0 to 0.015
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.15
1.8 to 2.2
Silicon (Si), % 7.5 to 9.5
0
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 0.5