MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. C91600 Bronze

364.0 aluminum belongs to the aluminum alloys classification, while C91600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is C91600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 7.5
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 300
310
Tensile Strength: Yield (Proof), MPa 160
160

Thermal Properties

Latent Heat of Fusion, J/g 520
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 600
1030
Melting Onset (Solidus), °C 560
860
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 120
71
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
10
Electrical Conductivity: Equal Weight (Specific), % IACS 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.7
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1080
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
30
Resilience: Unit (Modulus of Resilience), kJ/m3 180
120
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 53
18
Strength to Weight: Axial, points 31
9.9
Strength to Weight: Bending, points 38
12
Thermal Diffusivity, mm2/s 51
22
Thermal Shock Resistance, points 14
11

Alloy Composition

Aluminum (Al), % 87.2 to 92
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 0.020 to 0.040
0
Chromium (Cr), % 0.25 to 0.5
0
Copper (Cu), % 0 to 0.2
85.9 to 89.1
Iron (Fe), % 0 to 1.5
0 to 0.2
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.15
1.2 to 2.0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 7.5 to 9.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
9.7 to 10.8
Zinc (Zn), % 0 to 0.15
0 to 0.25
Residuals, % 0 to 0.15
0