MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. S32520 Stainless Steel

364.0 aluminum belongs to the aluminum alloys classification, while S32520 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is S32520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 7.5
28
Fatigue Strength, MPa 120
460
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Shear Strength, MPa 200
560
Tensile Strength: Ultimate (UTS), MPa 300
860
Tensile Strength: Yield (Proof), MPa 160
630

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 180
960
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
31
Strength to Weight: Bending, points 38
26
Thermal Diffusivity, mm2/s 51
4.1
Thermal Shock Resistance, points 14
24

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.25 to 0.5
24 to 26
Copper (Cu), % 0 to 0.2
0.5 to 2.0
Iron (Fe), % 0 to 1.5
57.3 to 66.8
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.15
5.5 to 8.0
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 7.5 to 9.5
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0