MakeItFrom.com
Menu (ESC)

364.0 Aluminum vs. S39274 Stainless Steel

364.0 aluminum belongs to the aluminum alloys classification, while S39274 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 364.0 aluminum and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 7.5
17
Fatigue Strength, MPa 120
380
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Shear Strength, MPa 200
560
Tensile Strength: Ultimate (UTS), MPa 300
900
Tensile Strength: Yield (Proof), MPa 160
620

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
4.3
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1080
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
940
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 31
32
Strength to Weight: Bending, points 38
26
Thermal Diffusivity, mm2/s 51
4.2
Thermal Shock Resistance, points 14
25

Alloy Composition

Aluminum (Al), % 87.2 to 92
0
Beryllium (Be), % 0.020 to 0.040
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.25 to 0.5
24 to 26
Copper (Cu), % 0 to 0.2
0.2 to 0.8
Iron (Fe), % 0 to 1.5
57 to 65.6
Magnesium (Mg), % 0.2 to 0.4
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.15
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0