MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. 7075 Aluminum

Both 380.0 aluminum and 7075 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
70
Elongation at Break, % 3.0
1.8 to 12
Fatigue Strength, MPa 140
110 to 190
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
26
Shear Strength, MPa 190
150 to 340
Tensile Strength: Ultimate (UTS), MPa 320
240 to 590
Tensile Strength: Yield (Proof), MPa 160
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 510
380
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 540
480
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 100
130
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
33
Electrical Conductivity: Equal Weight (Specific), % IACS 83
98

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
3.0
Embodied Carbon, kg CO2/kg material 7.5
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 1870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
46
Strength to Weight: Axial, points 31
22 to 54
Strength to Weight: Bending, points 36
28 to 52
Thermal Diffusivity, mm2/s 40
50
Thermal Shock Resistance, points 14
10 to 25

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
86.9 to 91.4
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 3.0 to 4.0
1.2 to 2.0
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0 to 0.1
2.1 to 2.9
Manganese (Mn), % 0 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0 to 0.4
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 3.0
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15