MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. ACI-ASTM CA40F Steel

380.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is ACI-ASTM CA40F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
230
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
13
Fatigue Strength, MPa 140
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 320
770
Tensile Strength: Yield (Proof), MPa 160
550

Thermal Properties

Latent Heat of Fusion, J/g 510
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 100
27
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
94
Resilience: Unit (Modulus of Resilience), kJ/m3 170
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
28
Strength to Weight: Bending, points 36
24
Thermal Diffusivity, mm2/s 40
7.2
Thermal Shock Resistance, points 14
28

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 2.0
81.6 to 88.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.5
Sulfur (S), % 0
0.2 to 0.4
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0