MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. ACI-ASTM CD3MWCuN Steel

380.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD3MWCuN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is ACI-ASTM CD3MWCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 3.0
29
Fatigue Strength, MPa 140
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 320
790
Tensile Strength: Yield (Proof), MPa 160
500

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.5
4.2
Embodied Energy, MJ/kg 140
58
Embodied Water, L/kg 1040
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
28
Strength to Weight: Bending, points 36
24
Thermal Diffusivity, mm2/s 40
4.2
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 3.0 to 4.0
0.5 to 1.0
Iron (Fe), % 0 to 2.0
56.6 to 65.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
6.5 to 8.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.35
0
Tungsten (W), % 0
0.5 to 1.0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0