MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. ACI-ASTM CN3MN Steel

380.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
180
Elastic (Young's, Tensile) Modulus, GPa 74
210
Elongation at Break, % 3.0
39
Fatigue Strength, MPa 140
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 320
620
Tensile Strength: Yield (Proof), MPa 160
300

Thermal Properties

Latent Heat of Fusion, J/g 510
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 100
13
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 7.5
6.2
Embodied Energy, MJ/kg 140
84
Embodied Water, L/kg 1040
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 36
20
Thermal Diffusivity, mm2/s 40
3.4
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 3.0 to 4.0
0 to 0.75
Iron (Fe), % 0 to 2.0
41.4 to 50.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.5
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0