MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. AISI 403 Stainless Steel

380.0 aluminum belongs to the aluminum alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
16 to 25
Fatigue Strength, MPa 140
200 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 190
340 to 480
Tensile Strength: Ultimate (UTS), MPa 320
530 to 780
Tensile Strength: Yield (Proof), MPa 160
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 100
28
Thermal Expansion, µm/m-K 22
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.9
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1040
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 170
210 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
19 to 28
Strength to Weight: Bending, points 36
19 to 24
Thermal Diffusivity, mm2/s 40
7.6
Thermal Shock Resistance, points 14
20 to 29

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 2.0
84.7 to 88.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0