MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. ASTM Grade LC9 Steel

380.0 aluminum belongs to the aluminum alloys classification, while ASTM grade LC9 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is ASTM grade LC9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
22
Fatigue Strength, MPa 140
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 320
660
Tensile Strength: Yield (Proof), MPa 160
590

Thermal Properties

Latent Heat of Fusion, J/g 510
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.0
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 7.5
2.3
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1040
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
920
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
23
Strength to Weight: Bending, points 36
21
Thermal Shock Resistance, points 14
20

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.5
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 2.0
87.4 to 91.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.9
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.5
8.5 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 0.45
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0