MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. AWS E100C-K3

380.0 aluminum belongs to the aluminum alloys classification, while AWS E100C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is AWS E100C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 320
770
Tensile Strength: Yield (Proof), MPa 160
700

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 100
48
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.4
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.7
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1040
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
27
Strength to Weight: Bending, points 36
24
Thermal Diffusivity, mm2/s 40
13
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 3.0 to 4.0
0 to 0.35
Iron (Fe), % 0 to 2.0
92.6 to 98.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0 to 0.5
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0
0 to 0.5