MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. AWS E90C-B9

380.0 aluminum belongs to the aluminum alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Tensile Strength: Ultimate (UTS), MPa 320
710
Tensile Strength: Yield (Proof), MPa 160
460

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 100
25
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1040
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 36
23
Thermal Diffusivity, mm2/s 40
6.9
Thermal Shock Resistance, points 14
20

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 3.0 to 4.0
0 to 0.2
Iron (Fe), % 0 to 2.0
84.4 to 90.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 0.5
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0
0 to 0.5