MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. EN 1.4590 Stainless Steel

380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4590 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is EN 1.4590 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 3.0
26
Fatigue Strength, MPa 140
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 190
310
Tensile Strength: Ultimate (UTS), MPa 320
480
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 510
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 100
26
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
2.5
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1040
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
17
Strength to Weight: Bending, points 36
18
Thermal Diffusivity, mm2/s 40
7.0
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 2.0
79.7 to 83.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0.35 to 0.55
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0