MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. EN 1.4659 Stainless Steel

380.0 aluminum belongs to the aluminum alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
260
Elastic (Young's, Tensile) Modulus, GPa 74
210
Elongation at Break, % 3.0
49
Fatigue Strength, MPa 140
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
81
Shear Strength, MPa 190
640
Tensile Strength: Ultimate (UTS), MPa 320
900
Tensile Strength: Yield (Proof), MPa 160
480

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1480
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 83
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 7.5
6.5
Embodied Energy, MJ/kg 140
89
Embodied Water, L/kg 1040
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
370
Resilience: Unit (Modulus of Resilience), kJ/m3 170
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
31
Strength to Weight: Bending, points 36
25
Thermal Diffusivity, mm2/s 40
3.2
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 3.0 to 4.0
1.0 to 2.0
Iron (Fe), % 0 to 2.0
35.7 to 45.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0 to 0.5
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0