MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. EN 1.7725 Steel

380.0 aluminum belongs to the aluminum alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 3.0
14
Fatigue Strength, MPa 140
390 to 550
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 320
830 to 1000
Tensile Strength: Yield (Proof), MPa 160
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 100
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.9
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.8
Embodied Energy, MJ/kg 140
24
Embodied Water, L/kg 1040
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
980 to 1940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
29 to 35
Strength to Weight: Bending, points 36
25 to 28
Thermal Diffusivity, mm2/s 40
11
Thermal Shock Resistance, points 14
24 to 29

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 2.0
95.7 to 97.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0