MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. Grade VDC Steel

380.0 aluminum belongs to the aluminum alloys classification, while grade VDC steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is grade VDC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
510
Elastic (Young's, Tensile) Modulus, GPa 74
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 320
1700

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
60
Strength to Weight: Bending, points 36
40
Thermal Diffusivity, mm2/s 40
14
Thermal Shock Resistance, points 14
50

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 3.0 to 4.0
0 to 0.060
Iron (Fe), % 0 to 2.0
98.3 to 99.35
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.5 to 9.5
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0