MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. C84000 Brass

380.0 aluminum belongs to the aluminum alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
65
Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 3.0
27
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
42
Tensile Strength: Ultimate (UTS), MPa 320
250
Tensile Strength: Yield (Proof), MPa 160
140

Thermal Properties

Latent Heat of Fusion, J/g 510
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
1040
Melting Onset (Solidus), °C 540
940
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 100
72
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
16
Electrical Conductivity: Equal Weight (Specific), % IACS 83
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 7.5
3.0
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1040
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
58
Resilience: Unit (Modulus of Resilience), kJ/m3 170
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 31
8.2
Strength to Weight: Bending, points 36
10
Thermal Diffusivity, mm2/s 40
22
Thermal Shock Resistance, points 14
9.0

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 3.0 to 4.0
82 to 89
Iron (Fe), % 0 to 2.0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.010
Nickel (Ni), % 0 to 0.5
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 7.5 to 9.5
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.35
2.0 to 4.0
Zinc (Zn), % 0 to 3.0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7