MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. N06200 Nickel

380.0 aluminum belongs to the aluminum alloys classification, while N06200 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
220
Elongation at Break, % 3.0
51
Fatigue Strength, MPa 140
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
84
Shear Strength, MPa 190
560
Tensile Strength: Ultimate (UTS), MPa 320
780
Tensile Strength: Yield (Proof), MPa 160
320

Thermal Properties

Latent Heat of Fusion, J/g 510
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 590
1500
Melting Onset (Solidus), °C 540
1450
Specific Heat Capacity, J/kg-K 870
430
Thermal Conductivity, W/m-K 100
9.1
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 83
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 2.9
8.7
Embodied Carbon, kg CO2/kg material 7.5
12
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1040
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
320
Resilience: Unit (Modulus of Resilience), kJ/m3 170
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 40
2.4
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 3.0 to 4.0
1.3 to 1.9
Iron (Fe), % 0 to 2.0
0 to 3.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.5
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0