MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. N06985 Nickel

380.0 aluminum belongs to the aluminum alloys classification, while N06985 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
210
Elongation at Break, % 3.0
45
Fatigue Strength, MPa 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Shear Strength, MPa 190
480
Tensile Strength: Ultimate (UTS), MPa 320
690
Tensile Strength: Yield (Proof), MPa 160
260

Thermal Properties

Latent Heat of Fusion, J/g 510
320
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 540
1260
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 100
10
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 83
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 7.5
8.8
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1040
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
250
Resilience: Unit (Modulus of Resilience), kJ/m3 170
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 31
23
Strength to Weight: Bending, points 36
21
Thermal Diffusivity, mm2/s 40
2.6
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 3.0 to 4.0
1.5 to 2.5
Iron (Fe), % 0 to 2.0
18 to 21
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0 to 0.5
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0