MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. N08800 Stainless Steel

380.0 aluminum belongs to the aluminum alloys classification, while N08800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 3.0
4.5 to 34
Fatigue Strength, MPa 140
150 to 390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 190
340 to 580
Tensile Strength: Ultimate (UTS), MPa 320
500 to 1000
Tensile Strength: Yield (Proof), MPa 160
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1390
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 83
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.5
5.3
Embodied Energy, MJ/kg 140
76
Embodied Water, L/kg 1040
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 170
96 to 1740
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 31
18 to 35
Strength to Weight: Bending, points 36
18 to 28
Thermal Diffusivity, mm2/s 40
3.0
Thermal Shock Resistance, points 14
13 to 25

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0.15 to 0.6
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 3.0 to 4.0
0 to 0.75
Iron (Fe), % 0 to 2.0
39.5 to 50.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.5
30 to 35
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0