MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. S82012 Stainless Steel

380.0 aluminum belongs to the aluminum alloys classification, while S82012 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is S82012 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 3.0
40
Fatigue Strength, MPa 140
480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Shear Strength, MPa 190
550
Tensile Strength: Ultimate (UTS), MPa 320
800
Tensile Strength: Yield (Proof), MPa 160
560

Thermal Properties

Latent Heat of Fusion, J/g 510
280
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
2.4
Embodied Energy, MJ/kg 140
35
Embodied Water, L/kg 1040
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
290
Resilience: Unit (Modulus of Resilience), kJ/m3 170
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
29
Strength to Weight: Bending, points 36
25
Thermal Diffusivity, mm2/s 40
3.9
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19 to 20.5
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 0 to 2.0
71.3 to 77.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.5
0.8 to 1.5
Nitrogen (N), % 0
0.16 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0